DeepCO³: Deep Instance Co-segmentation by Co-peak Search and Co-saliency Detection

Kuang-Jui Hsu¹,² Yen-Yu Lin¹ Yung-Yu Chuang¹,²
¹Academia Sinica, Taiwan ²National Taiwan University, Taiwan

Abstract

In this paper, we address a new task called instance co-segmentation. Given a set of images jointly covering object instances of a specific category, instance co-segmentation aims to identify all of these instances and segment each of them, i.e., generating one mask for each instance. This task is important since instance-level segmentation is preferable for humans and many vision applications. It is also challenging because no pixel-wise annotated training data are available and the number of instances in each image is unknown. We solve this task by dividing it into two sub-tasks, co-peak search and instance mask segmentation. In the former sub-task, we develop a CNN-based network to detect the co-peaks as well as co-saliency maps for a pair of images. A co-peak has two endpoints, one in each image, that are local maxima in the response maps and similar to each other. Thereby, the two endpoints are potentially covered by a pair of instances of the same category. In the latter sub-task, we design a ranking function that takes the detected co-peaks and co-saliency maps as inputs and can select the object proposals to produce the final results. Our method for instance co-segmentation and its variant for object co-localization are evaluated on four datasets, and achieve favorable performance against the state-of-the-art methods. The source codes and the collected datasets are available at https://github.com/KuangJuiHsu/DeepCO3/.

1. Introduction

Object co-segmentation aims to segment the common objects repetitively appearing in a set of images. It is a fundamental and active research topic in computer vision. As an important component of image content understanding, it is essential to many vision applications, such as semantic segmentation [48], image matching [4, 19, 25, 52, 60, 61], object skeletonization [8, 27], and 3D reconstruction [42]. Object co-segmentation has recently gained significant progress owing to the fast development of convolutional neural networks (CNNs). The CNN-based methods [21, 33, 62] learn the representation of common objects in an end-to-end manner and can produce object-level results of high quality. However, they do not explore instance-aware information, i.e., one segmentation mask for each instance rather than each class, which is more consistent with human perception and offers better image understanding, such as the locations and shapes of individual instances.

In this work, we present a new and challenging task called instance-aware object co-segmentation (or instance co-segmentation for short). Two examples of this task are shown in Figure 1 for a quick start. Given a set of images of a specific object category with each image covering at least one instance of that category, instance co-segmentation aims to identify all of these instances and segment each of them out, namely one mask for each instance. Note that unlike semantic [18] or instance segmentation [65], no pixel-wise data annotations are collected for learning. The object category can be arbitrary and unknown, which means that no training images of that category are available in advance. Instance-level segments that can be obtained by solving this task are valuable to many vision applications, such as autonomous driving [2, 64], instance placement [31], image and sentence matching [26] or amodal segmentation [23].
Therefore, instance co-segmentation has a practical setting in input collection and better accomplishing it potentially advances the field of computer vision.

In this paper, we develop a CNN-based method for instance co-segmentation. Based on the problem setting, our method has no access to annotated instance masks for learning and cannot involve any pre-training process. Inspired by Zhou et al. [65]’s observation that object instances often cover the peaks in a response map of a classifier, we design a novel co-peak loss to detect the common peaks (or co-peaks for short) in two images. The co-peak loss is built upon a 4D tensor that is learned to encode the inter-image similarity at every location. The co-peaks inferred from the learned 4D tensor correspond to two locations, one in each of the two images, where discriminative and similar features are present. Therefore, the two locations are potentially covered by two object instances. Using the co-peak loss alone may lead to unfavorable false positives and negatives. Thus, we develop the affinity loss and the saliency loss to complement the co-peak loss. The former carries out discriminative feature learning for the 4D tensor construction by separating the foreground and background features. The latter estimates the co-saliency maps to localize the co-salient objects in an image, and can make our model focus on co-peak search in co-salient regions. The three loss functions work jointly and can detect co-peaks of high quality. We design a ranking function taking the detected co-peaks and co-saliency maps as inputs and accomplish instance mask segmentation by selecting object proposals.

We make the following contributions in this work. First, we introduce a new and interesting task called instance co-segmentation. Its input is a set of images containing object instances of a specific category, and hence is easy to collect. Its output is instance-aware segments, which are desired in many vision applications. Thus, we believe instance co-segmentation worth exploring. Second, a simple and effective method is developed for instance co-segmentation. The proposed method learns a model based on the fully convolutional network (FCN) [40] by optimizing three losses, including the co-peak, affinity, and saliency losses. The learned model can reliably detect co-peaks and co-saliency maps for instance mask segmentation. Third, we collect four datasets for evaluating instance co-segmentation. The proposed method for instance co-segmentation and its variant for object co-localization [5,6,51,58,59] are extensively evaluated on the four datasets. Our method performs favorably against the state-of-the-art methods.

2. Related Work

Object co-segmentation. This task [13, 28, 45, 46, 54, 56, 57] aims to segment the common objects in images. Its major difficulties lie in large intra-class variations and background clutter. Most methods rely on robust features, such as handcrafted and deep learning based features, for addressing these difficulties. In addition, saliency evidence, including single-image saliency [12, 20, 27, 28, 46, 53] or multi-image co-saliency [3, 54, 57], has been explored to localize the salient and common objects. Recently, CNN-based methods [21, 33, 62] achieve better performance by joint representation learning and co-segmentation.

Despite effectiveness, the aforementioned methods do not provide instance-level results. In this work, we go beyond object co-segmentation and investigate instance co-segmentation. Our method can determine the number, locations, and contours of common instances in each image, and offers instance-aware image understanding.

Object co-localization. This task [5, 6, 51, 58, 59] discovers the common instances in images. Different from object co-segmentation, it is instance-aware. It detects and outputs the bounding box of a single instance in each image even if multiple instances are present in the image. Compared with object co-localization, instance co-segmentation identifies all instances in an image in the form of instance segments.

Instance-aware segmentation. Instance-aware segmentation includes class-aware [1, 7, 15, 17, 65] and class-agnostic [11, 24, 32] methods. Given training data of predefined categories, class-aware instance segmentation, aka instance segmentation, learns a model to seek each object instance belonging to one of these categories. A widely used way for instance segmentation is to first detect instance bounding boxes and then segment the instances within the bounding boxes [7, 15–17, 35, 38, 43]. Another way is to directly segment each instance without bounding box detection [1, 30, 36, 39, 65]. While most methods for instance segmentation are supervised, Zhou et al. [65] present a weakly supervised one. All these methods for instance segmentation rely on training data to learn the models. Despite the effectiveness and efficiency in testing, their learned models are not applicable to unseen object categories.

In practice, it is difficult to enumerate all object categories of interest in advance and prepare class-specific training data, which limits the applicability of class-aware instance segmentation. Class-agnostic instance segmentation [11, 24, 32] aims at segmenting object instances of arbitrary categories, and has drawn recent attention. It is challenging because it involves both generic object detection and segmentation. Instance co-segmentation is highly related to class-agnostic instance segmentation in the sense that both of them can be applied to arbitrary and even unseen object categories. However, existing class-agnostic methods require annotated training data in the form of object contours. On the contrary, our method for instance co-segmentation explores the mutual information regarding the common instances in given images, and does not need any pre-training procedure on additional data annotations. Thus, our method has better generalization.
3. Proposed Method

In this section, we give an overview of our method, describe its components, co-peak search and instance mask segmentation, and provide the implementation details.

3.1. Overview

Suppose that a set of images $D = \{I_n\}_{n=1}^N$ consisting of object instances of a particular category is given, where $I_n \in \mathbb{R}^{W \times H \times c}$ is the nth image while W, H, and c are the width, the height, and the number of channels of I_n, respectively. The goal of instance co-segmentation is to identify and segment each of all instances in D. Note that no training data with pixel-wise annotations are provided. In addition, both the object category and the number of instances in each image are unknown.

In the proposed method, we decompose instance co-segmentation into two stages, i.e., co-peak search and instance mask segmentation. The overview of our method is shown in Figure 2, where the two stages are highlighted with the blue-shaded area and the red-shaded backgrounds, respectively.

At the stage of co-peak search, we aim to seek co-peaks in the response maps of two images, where a co-peak corresponds to two discriminative and similar points, one in each image, so that each point is potentially within an object instance. We design a network model for co-peak detection. The front part of our model is a fully convolutional network (FCN) g, which extracts the feature maps of input images. After feature extraction, our model is split into two streams.

One stream correlates the feature maps of two images for co-peak localization. The other estimates the co-saliency maps of input images, which in turn enforces FCN g to generate more discriminative feature maps. Our model is optimized by three novel loss functions, including the co-peak loss ℓ_c, the affinity loss ℓ_a, and the saliency loss ℓ_s. After optimization, co-peaks are detected and co-saliency maps are estimated. At the stage of instance mask segmentation, we design a ranking function that takes the detected co-peaks, the estimated co-saliency maps, and the instance proposals into account, and yield one mask for each detected instance.

3.2. Co-peak search

As shown in Figure 2, our model takes a pair of images, I_n and I_m, from D as input at a time. It first extracts the feature maps $F_n \in \mathbb{R}^{w \times h \times d}$ for I_n, where w, h, and d are the width, the height, and the number of channels, respectively. Similarly, feature maps $F_m \in \mathbb{R}^{w \times h \times d}$ are yielded for I_m. Our model is then divided into two streams. One stream performs correlation between F_n and F_m, and yields a 4D correlation tensor $T_{nm} \in \mathbb{R}^{w \times h \times w \times h}$. Each element $T_{nm}(i, j, s, t) = \langle T_{nm}, F_n(i, j, s), F_m(t, t) \rangle$ records the normalized inner product between the feature vectors stored at two spatial locations, i.e., $p = [i, j]$ in F_n and $q = [s, t]$ in F_m. The other stream employs a 1×1 convolutional layer to estimate the co-saliency map $S_k \in \mathbb{R}^{w \times h}$ of I_k, and adopts deconvolution layers to generate a high-resolution co-saliency map $S_k \in \mathbb{R}^{W \times H}$, for $k \in \{n, m\}$. We design three loss functions, including the co-peak loss ℓ_c, the affinity loss ℓ_a, and the saliency loss ℓ_s, to derive the network, leading to the

Figure 2. Overview of our method, which contains two stages, co-peak search within the blue-shaded background and instance mask segmentation within the red-shaded background. For searching co-peaks in a pair of images, our model extracts image features, estimates their co-saliency maps, and performs feature correlation for co-peak localization. The model is optimized by three losses, including the co-peak loss ℓ_c, the affinity loss ℓ_a, and the saliency loss ℓ_s. For instance mask segmentation, we design a ranking function taking the detected co-peaks, the co-saliency maps, and the object proposals as inputs, and select the top-ranked proposal for each detected instance.
following object function

\[\mathcal{L}(w) = \lambda_\ell \sum_{n=1}^{N} \sum_{m \neq n} \ell_t(I_n, I_m; w) + \lambda_s \sum_{n=1}^{N} \ell_s(I_n; w), \]

where \(w \) is the set of learnable parameters of the network. Nonnegative weights \(\lambda_\ell \) and \(\lambda_s \) control the relative importance among the three losses. They are fixed to 0.5 and 0.1 in this work, respectively. The co-peak loss \(\ell_t \) stimulates co-peak detection. The affinity loss \(\ell_a \) refers to the co-saliency maps and enables discriminative feature learning. The saliency loss \(\ell_s \) working with the other two losses carries out co-saliency detection and hence facilitates instance co-segmentation. The three losses are elaborated in the following.

3.2.1 Co-peak loss \(\ell_t \)

This loss aims to stimulate co-peak detection. A co-peak consists of two points, one in each of \(I_n \) and \(I_m \). Since a co-peak covered by a pair of instances of the same object category is desired, the two points of the co-peak must be inside the object and similar to each other. Therefore, both **intra-image saliency** and **inter-image correlation** are taken into account in this loss.

As shown in Figure 2, our two-stream network produces the intra-image saliency maps \(S_n \) and \(S_m \) in one stream and inter-image correlation map \(T_{nm} \) in the other stream. To jointly consider the two types of information, a saliency-guided correlation tensor \(T_{nm}^s \in \mathbb{R}^{w \times h \times w \times h} \) is constructed with its elements defined below

\[T_{nm}^s(p, q) = \tilde{S}_n(p)S_m(q)T_{nm}(p, q), \]

where \(p \in \mathcal{P}, q \in \mathcal{P}, \) and \(\mathcal{P} \) is the set of all spatial coordinates of the feature maps. In Eq. (2), \(\tilde{S}_n(p) \) is the saliency value of \(S_n \) at point \(p, \) and \(S_m(q) \) is similarly defined.

To have more reliable keypoints to reveal object instances, we define a co-peak as a local maximum in \(T_{nm}^s \) within a 4D local window of size \(3 \times 3 \times 3 \times 3 \). Suppose that \((p, q) \) is a peak in \(T_{nm}^s \). Both point \(p \) in \(F_n \) and point \(q \) in \(F_m \) are salient, and they are the most similar to each other in a local region. The former property implies that the two points probably reside in two salient object instances. The latter one reveals that the two instances are likely of the same class, since they have similar parts. Based on above discussion, the co-peak loss used to stimulate reliable co-peaks is defined by

\[\ell_t(I_n, I_m) = -\log \left(\frac{1}{|\mathcal{M}_{nm}|} \sum_{(p, q) \in \mathcal{M}_{nm}} T_{nm}^s(p, q) \right), \]

where \(\mathcal{M}_{nm} \) is the set of co-peaks.

3.2.2 Affinity loss \(\ell_a \)

The co-peak loss refers to the feature maps of the images, so discriminative features that can separate instances from background are preferable. Besides, the co-peak loss is applied to the locations of co-peaks, and features on other locations are ignored. The affinity loss is introduced to address the two issues. It aims to derive the features with which pixels in the salient regions are similar to each other while being distinct from those in the background. For a pair of images \(I_n \) and \(I_m, \) a loss \(\tilde{\ell}_a(I_n, I_m) \) is defined by

\[\tilde{\ell}_a(I_n, I_m) = \sum_{p \in \mathcal{P}, q \in \mathcal{P}} \tilde{S}_n(p)S_m(q)(1 - T_{nm}(p, q)) + \alpha(\tilde{S}_n(p) - \tilde{S}_n(q))^2T_{nm}(p, q), \]

where constant \(\alpha \) is empirically set to 4. In Eq. (4), the first term penalizes the case of low similarity between two salient pixels, while the second term prevents high similarity between a salient pixel and a non-salient pixel. The proposed affinity loss generalizes \(\ell_t \) in Eq. (4) to consider both inter-image and intra-image affinities and is defined by

\[\ell_a(I_n, I_m) = \ell_a(I_n, I_m) + \tilde{\ell}_a(I_n, I_m) + \tilde{\ell}_a(I_m, I_m). \]

3.2.3 Saliency loss \(\ell_s \)

This term aims to identify the salient regions and can guide the training of our model. Following the studies of object co-segmentation [27, 28, 46, 53], we utilize an off-the-shelf method for saliency detection. The resultant saliency maps can serve as the object prior. In this work, we adopt the unsupervised method, SVFSal [63], which produces the saliency map \(S_n \) for image \(I_n. \) Note that the resolutions of \(S_n \) and \(I_n \) are the same. Thus, the deconvolutional layers are employed to increase the resolution. Following [22], the saliency loss \(\ell_s \) applied to image \(I_n \) is defined by

\[\ell_s(I_n) = \sum_{p \in \mathcal{P}} \rho_n(p)|S_n(p) - \tilde{S}_n(p)|^2, \]

where \(p \) indexes the pixels of \(I_n, \) \(\rho_n(p) \) is a weight representing the importance of pixel \(p, \) and \(\tilde{S}_n \) is the predicted saliency map for \(I_n \) by our model. The weight \(\rho_n(p) \) deals with the imbalance between the salient and non-salient areas. It is set to \(1 - \varepsilon \) if pixel \(p \) resides in the salient region, and \(\varepsilon \) otherwise, where \(\varepsilon \) is the ratio of the salient area to the whole image. The mean value of \(\tilde{S}_n \) is used as the threshold to divide \(\tilde{S}_n \) into the salient and non-salient regions. In this way, the salient and non-salient regions contribute equally in Eq. (6). As shown in Figure 2, except for the deconvolutional layers, our model used to produce maps \(\{S_n\} \) is derived by the three losses jointly. Thus, \(\{S_n\} \) derived with both intra- and inter-image cues are called co-saliency maps. This prior term is helpful as it compensates for the lack of supervisory signals in instance co-segmentation.
3.3. Instance mask segmentation

After optimizing Eq. (1), we simply use the detected peaks on the estimated co-saliency maps as the final co-peak, because detecting the co-peaks on all possible image pairs is complicated. Thus, the peaks \(\{ p^n_i \}_{i=1}^M \) of each image \(I_n \) are collected, where \(M \) is the number of the peaks. We adopt the method called peak back-propagation [65] to infer an instance-aware heat map \(O^n_p \) for each peak \(p^n_i \). The map \(O^n_p \) is supposed to highlight the instance covering \(p^n_i \). An example is given in Figure 2.

For instance mask generation, we utilize an unsupervised method, called multi-scale combinatorial grouping (MCG) [44], to produce a set of instance proposals for image \(I_n \). With the heat maps \(\{ O^n_p \}_{i=1}^M \) and the co-saliency map \(S_n \), we extend the proposal ranking function in [65] by further taking the co-saliency cues into account, and select the top-ranked proposal as the mask for each detected peak. Specifically, given the maps \(O^n_p \) and \(S_n \), the ranking function \(R \) applied to an instance proposal \(P \) is defined by

\[
R(P) = \beta(O^n_p * S_n) * P + (O^n_p * S_n) * \hat{P} - \gamma(1 - S_n) * P, \tag{7}
\]

where \(\hat{P} \) is the contour of the proposal \(P \) and operator \(* \) is the Frobenius inner product between two matrices. The coefficients \(\beta \) and \(\gamma \) are set to 0.8 and \(10^{-5} \), respectively. In Eq. (7), three terms, i.e., the instance-aware, contour-preserving, and object-irrelevant terms, are included. The instance-aware term prefers the proposals that cover the regions with high responses in \(O^n_p \) and high saliency in \(S_n \). The contour-preserving term focuses on the fine-detailed boundary information. The background map, \(1 - S_n \), is used in the object-irrelevant term to suppress background regions. Compared with the ranking function in [65], ours further exploits the properties of instance co-segmentation, i.e., the high co-saliency values in object instances, and can select more accurate proposals. Following a standard protocol of instance segmentation, we perform non-maximum suppression (NMS) to remove the redundancies.

3.4. Implementation details

We implement the proposed method using MatConvNet [55]. VGG-16 [49] is adopted as the feature extractor \(g \). It is pre-trained on the ImageNet [47] dataset, and is updated during optimizing Eq. (1). The same network architecture is used in all experiments. Note that the objective in Eq. (1) involves all image pairs. Direct optimization is not feasible due to the limited memory size. Thereby, we adopt the piecewise training scheme [50]. Namely, only a subset of images is considered in each epoch, and the subset size is set to 6 in this work. The learning rate, weight decay, and momentum are set to \(10^{-6} \), 0.0005, and 0.9, respectively. The optimization procedure stops after 40 epochs. We choose ADAM [29] as the optimization solver. All images are resized to the resolution \(448 \times 448 \) in advance. We resize the instance co-segmentation results back to the original image resolution for performance evaluation.

4. Experimental Results

In this section, our method for instance co-segmentation and its variant for co-localization are evaluated. First, the adopted datasets and evaluation metrics are described. Then, the competing methods are introduced. Finally, the comparison results are reported and analyzed.

4.1. Dataset collection

As instance co-segmentation is a new task, no public benchmarks exist. Therefore, we establish four datasets with pixel-wise instance annotations by collecting images from three public benchmarks, including the MS COCO [37], PASCAL VOC 2012 [9, 14], and SOC [10] datasets. The following pre-processing is applied to each dataset. First, we remove the images where objects of more than one category are present. Second, we discard the categories that contain less than 10 images. The details of collecting images from each dataset are described below.

MS COCO dataset. We collect images from the training and validation sets of the MS COCO 2017 object detection task. As MS CCCO is a large-scale dataset, we further remove the images that do not contain at least two instances. Total 44 categories remain. Some competing methods are pre-trained on PASCAL VOC 2012 dataset. For the ease of comparison, we divide the 44 categories into two disjoint sets, COCO-VOC and COCO-NONVOC. The former contains 12 categories covered by the PASCAL VOC 2012 dataset, while the latter contains the rest.

PASCAL VOC 2012 dataset. Because few pixel-wise instance annotations are available in the PASCAL VOC 2012 dataset, we adopt the augmented VOC12 dataset [14], which has 18 object categories after dataset preprocessing.

SOC dataset. SOC [10] is a newly collected dataset for saliency detection. It provides image-level labels and instance-aware annotations. After preprocessing, only five object categories remain because many images contain object instances of multiple categories and some categories have less than 10 images.
The statistics and the abbreviations of the four collected datasets are given in Table 1. Note that our method can work on images containing one or multiple instances of the common object category. The SOC dataset helps test this issue. As shown in Table 1, the average number of instances in SOC is 1.6, less than 2. It shows that there exist many images in this dataset with only one object instance. Please refer to the supplementary material for more details and some image samples of the four collected datasets.

4.2. Evaluation metrics

For instance co-segmentation, mean average precision (mAP) [15] is adopted as the performance measure. Following [65], we report mAP using the IoU thresholds at 0.25 and 0.5, denoted as mAP$_{0.25}$ and mAP$_{0.5}$, respectively.

For object co-localization, the performance measure CorLoc [5,6,51,58,59] is used as the evaluation metric. The measure CorLoc is designed for evaluating the results in the form of object bounding boxes. For comparing with methods whose output is object or instance segments, we extend CorLoc to CorLocr to evaluate the results in the form of object segments.

4.3. Competing methods

As instance co-segmentation is a new task, there are no existing methods for performance comparison. We adopt two strategies for comparing our method with existing ones. First, we consider competing methods of three categories, including object co-localization, class-agnostic saliency segmentation, and weakly supervised instance segmentation. For methods of the three categories, we convert their predictions into the results in the form of instance co-segmentation, namely one segment mask for each detected instance. In this way, our method can be compared with these methods on the task of instance co-segmentation.

Second, we compare our method with methods of all the aforementioned three categories on the task of object co-localization. To this end, we need to convert the output of each compared method into the results in the form of object co-localization, namely the object bounding box with the highest confidence in each image.

In the two strategies of method comparison, two types of prediction conversion are required, including converting a bounding box to an instance segment and its inverse direction. Unless further specified, we adopt the following way to convert a bounding box prediction to an instance segment. Given a bounding box in an image, we apply MCG [44] to that image to generate a set of instance proposals, and retrieve the proposal with the highest IoU with the bounding box to represent it. On the other hand, it is easy to convert a given instance segment to a bounding box. We simply use the bounding box of that instance segment to represent it. In the following, the selected competing methods from each of the three categories are specified.

Object co-localization

Choose the state-of-the-art methods of this category for comparison, including CLRW [51], UODL [5], DDT [58], DDT+ [59], and DFF [6]. The first two methods, CLRW and UODL, output all bounding boxes with their scores, but cannot determine the number of instances in each image. Thus, we pick the top-scored bounding boxes as many as the instances detected by our method, and similarly apply NMS to remove redundancies. The last three methods, DDT, DDT+, and DFF, first produce the heat maps to highlight objects, then convert the heat maps into the binary masks by using their proposed mechanisms, and finally take the bounding boxes of the connected components on the binary masks.

Class-agnostic instance segmentation (CAIS)

We select two powerful methods, NLDF [41] and C2S-Net [34], of this category as the competing methods. The algorithm proposed in [32] is used to convert the saliency contours generated by NLDF and C2S-Net into the results in the form of instance co-segmentation.

Weakly supervised instance segmentation (WSIS)

The WSIS method, PRM [65], is trained on the PASCAL VOC 2012 dataset, and it cannot be applied to the images whose categories are not covered by the PASCAL VOC 2012
Figure 3. Results of instance co-segmentation on four object categories, *i.e.*, *cow*, *sheep*, *horse*, and *train*, of the COCO-VOC dataset. (a) Input images. (b) Ground truth. (c) ~ (g) Results with instance-specific coloring generated by different methods including (c) our method, (d) CLRW [51], (e) DFF [6], (f) NLDF [41], and (g) PRM [65], respectively.

Figure 4. Performance in mAP$^{r0.25}$ with different loss function combinations on the COCO-VOC and COCO-NONVOC datasets.

4.4. Instance co-segmentation

For the ease of performance analysis, we divide the evaluated methods into two groups, *i.e.*, trained and non-trained. The group trained includes NLDF [41], C2S-Net [34] and PRM [65]. Methods of this group require additional training data other than the input to instance co-segmentation. The other group non-trained contains our method and the rest of the competing methods. Methods of group non-trained have access to only the input to instance co-segmentation.

Our method and all competing methods are evaluated on the four collected datasets. Their performance is reported in Table 2. The proposed method outperforms the competing methods of group non-trained by large margins even though all of them access the same data. We attribute the performance gain yielded by our method to feature learning enabled CNNs. The competing methods of group non-trained adopt pre-defined features, and cannot well deal with complex and diverse intra-class variations and background clutters. On the contrary, our method leverages CNNs to carry out feature learning and instance co-segmentation simultaneously, leading to much better performance. Although the methods of group trained have access to additional training data, ours still reaches more favorable results. The main reason is that our method explores co-occurrent patterns via co-peak detection when images for instance co-segmentation are available, while the methods of group trained fix their models after training on additional data and cannot adapt themselves to newly given images for instance co-segmentation.

To gain the insight into the quantitative results, Figure 3 visualizes the qualitative results generated by our method, CLRW [51], DFF [6], NLDF [41], and PRM [65]. The major difficulties of instance segmentation lie in instance mutual occlusions, intra-class variations, and clut-
tered scene. As shown in Figure 3(c), our method still works well when instance mutual occlusions occur on categories cow, sheep, and horse and large intra-class variations and cluttered scene are present on category train. In Figure 3(d), CLRW yields some false alarms in the background while has false negatives on category train. In Figure 3(e), DFF cannot well address instance mutual occlusions due to computing connected components for instance identification. In Figure 3(f) and Figure 3(g), NLDF and CRP perform favorably against other competing methods, but still suffer from over-segmentation and misses, respectively.

Ablation studies. We analyze the proposed objective consisting of three loss functions in Eq. (1) on the COCO-VOC and COCO-NONVOC datasets, and report the results in Figure 4. Except loss ℓ_s, the other two losses, ℓ_t and ℓ_a, are added one by one. When ℓ_t is included, the performance gains are significant on both datasets. It implies that ℓ_t for reliable co-peak search is important in our method. Once ℓ_a is added, the performance is moderately enhanced, which means that discriminative feature learning is helpful for instance co-segmentation. In addition to the objective, the effect of referring to co-saliency maps in proposal ranking is analyzed in Table 3. The results clearly point out that information from co-saliency detection is crucial to proposal ranking. It is not surprised. Since co-peaks identify the keypoints within instances, we still need the evidence from co-saliency maps to reveal the corresponding instances.

4.5. Object co-localization

We evaluate our method and the competing methods for object co-localization in the four datasets we collected. For our method, we pick the top-ranked proposal in each image when evaluating the performance in CorLoc. Table 4 reports the performance of all the compared methods. Our method achieves the comparable or even better performance, even though it is not originally designed for object co-localization. Seven examples of object co-localization by our method are shown in Figure 5, where accurate instance masks and the corresponding bounding boxes are discovered by our method.

<table>
<thead>
<tr>
<th>method</th>
<th>year</th>
<th>trained</th>
<th>COCO-VOC</th>
<th>COCO-NONVOC</th>
<th>VOC12</th>
<th>SOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLRW [51]</td>
<td>CVPR 2014</td>
<td>×</td>
<td>33.4</td>
<td>31.6</td>
<td>29.9</td>
<td>30.9</td>
</tr>
<tr>
<td>UODL [5]</td>
<td>CVPR 2015</td>
<td>×</td>
<td>12.3</td>
<td>12.7</td>
<td>9.5</td>
<td>10.3</td>
</tr>
<tr>
<td>DDTF [58]</td>
<td>IJCAI 2017</td>
<td>×</td>
<td>30.0</td>
<td>27.4</td>
<td>25.0</td>
<td>16.7</td>
</tr>
<tr>
<td>DDTF+ [59]</td>
<td>PR 2019</td>
<td>×</td>
<td>29.5</td>
<td>25.8</td>
<td>23.7</td>
<td>18.4</td>
</tr>
<tr>
<td>DFF [6]</td>
<td>ECCV 2018</td>
<td>×</td>
<td>32.3</td>
<td>30.5</td>
<td>28.7</td>
<td>22.9</td>
</tr>
<tr>
<td>NLDF [41]</td>
<td>CVPR 2017</td>
<td>✓</td>
<td>51.2</td>
<td>31.0</td>
<td>39.2</td>
<td>32.6</td>
</tr>
<tr>
<td>C2S-Net [34]</td>
<td>ECCV 2018</td>
<td>✓</td>
<td>39.0</td>
<td>28.4</td>
<td>31.1</td>
<td>32.9</td>
</tr>
<tr>
<td>Ours</td>
<td>CVPR 2018</td>
<td>×</td>
<td>49.6</td>
<td>34.3</td>
<td>39.2</td>
<td>43.1</td>
</tr>
</tbody>
</table>

Table 4. Performance of object co-localization on the four datasets. The numbers in red and green indicate the best and the second best results, respectively. The column “trained” indicates whether additional training data are used.

5. Conclusions

In this paper, we present an interesting and challenging task called instance co-segmentation, and propose a CNN-based method to effectively solve it without using additional training data. We decompose this task into two sub-tasks, including co-peak search and instance mask segmentation. In the former sub-task, we design three novel losses, co-peak, affinity, and saliency losses, for joint co-peak and co-saliency map detection. In the latter sub-task, we develop an effective proposal ranking algorithm, and can retrieve high-quality proposals to accomplish instance co-segmentation. Our method for instance co-segmentation and its variant for object co-localization are extensively evaluated on the four collected datasets. Both quantitative and qualitative results show that our method and its variant perform favorably against the state-of-the-arts. In the future, we plan to integrate the proposed method into more high-level tasks, such as autonomous driving, visual question answering, image and sentence matching where instance-aware annotations are valuable.

Acknowledgments. This work was supported in part by Ministry of Science and Technology (MOST) under grants 107-2628-E-001-005-MY3 and 108-2634-F-007-009, and MOST Joint Research Center for AI Technology and All Vista Healthcare under grant 108-2634-F-002-004.
References

[34] Xin Li, Fan Yang, Hong Cheng, Wei Liu, and Dinggang Shen. Contour knowledge transfer for salient object detection. In ECCV, 2018.

[56] Chuan Ping Wang, Hua Zhang, Liang Yang, Xiaochun Cao, and Hongkai Xiong. Multiple semantic matching on augmented n-partite graph for object co-segmentation. TIP, 2017.