LEARNING AND INFERRING HUMAN ACTIONS WITH TEMPORAL PYRAMID FEATURES BASED ON CONDITIONAL RANDOM FIELDS

Shih-Yao Lin1,2 Yen-Yu Lin2 Chu-Song Chen2 Yi-Ping Hung1

1National Taiwan University, Taiwan \quad 2Academia Sinica, Taiwan

ABSTRACT

Finding an effective way to represent human actions is yet an open problem because it usually requires taking evidences extracted from various temporal resolutions into account. A conventional way of representing an action employs temporally ordered fine-grained movements, e.g., key poses or subtle motions. Many existing approaches model actions by directly learning the transitional relationships between those fine-grained features. Yet, an action data may have many similar observations with occasional and irregular changes, which make commonly used fine-grained features less reliable. This paper presents a set of temporal pyramid features that enriches action representation with various levels of semantic granularities. For learning and inferring the proposed pyramid features, we adopt a discriminative model with latent variables to capture the hidden dynamics in each layer of the pyramid. Our method is evaluated on a Tai-Chi Chun dataset and a daily activities dataset. Both of them are collected by us. Experimental results demonstrate that our approach achieves more favorable performance than existing methods.

Index Terms—human action recognition, conditional random fields, temporal pyramid representation

1. INTRODUCTION

Human action recognition has drawn increasing attention of researchers in last decades due to its wide range of applications, such as surveillance, health-care, and human-computer interactions, etc. Despite remarkable research efforts and encouraging advances [1, 2, 3, 4, 5, 6], accurate action recognition is still very challenging.

A conventional way to represent a human action is to employ a sequence of fine-grained movements, e.g., key poses or salient sub-motions, and model the transition between them. However, actions may have many similar observations with occasional and irregular variations, which make commonly used fine-grained movements no longer stable enough. Mid-level movements, e.g., sub-actions formed with a sequence of fine-grained movements, instead better characterize actions in some cases. Fig. 1 shows an action example of category high jump containing lots of fine-grained movements in its low-level representation. Mod-
alignment process to pre-align actions before training and testing. The alignment process can be carried out by dynamic programming schemes, e.g., dynamic time warping (DTW). However, most alignment processes are sensitive to noise, and lead to extra computational cost.

Graphical models-based methods, e.g., conditional random fields (CRFs) [15] and hidden Markov model (HMM) [16, 17], are widely used for modeling the temporal dynamic of action sequences. More importantly, the graphical model-based solutions do not need extra computational burden for temporal alignment process. Among various graphical models, the hidden-state CRFs (HCRFs) [18] have shown the expressive power for structured data prediction, and achieve superior performance to that HMM and CRFs [18, 19, 20].

Inspired by the FTP representation [14] for describing the temporal structure from fine to coarse, we propose a new temporal pyramid representation that expresses an action with various semantic granularities. Moreover, we introduce a method to learn and infer the temporal structure with various semantic granularities under conditional random fields. Our approach, termed as multi-layer HCRFs (MLHCRFs), is developed upon HCRFs. It leverages hidden variables to jointly learn the discriminative information at various temporal resolutions, and models the latent temporal structure between local descriptors in each layer of the pyramid. Our method is compared with the state-of-the-art methods on two datasets we collected, including Tai-Chi Chun3D and Daily Activities3D datasets. Superior results show its effectiveness.

2. THE PROPOSED APPROACH

In this section, a brief review of HCRFs is firstly given. The proposed temporal pyramid representation and its learning upon HCRFs are then depicted, respectively.

2.1. Action Recognition with HCRFs

The main idea behind the HCRFs is to enrich CRFs [21] by augmenting hidden states to capture the implicit structure of the input features.

For an action instance \(x = \{x_1, x_2, ..., x_T\} \) of \(T \) time stamps, a set of hidden variables, \(h = \{h_1, h_2, ..., h_T\} \in \mathcal{H} \), is created, where one variable for each time stamp. The hidden variables, whose states correspond to key poses in this work, are used to explore complex dependencies among action classes, key poses, and observations, and to model temporal coherence. The conditional probability \(P(y|\mathbf{x}, \theta) \) in HCRFs is given by

\[
P(y|\mathbf{x}, \theta) = \sum_{h \in \mathcal{H}} P(y, h|\mathbf{x}, \theta)
\]

\[
= \sum_{h \in \mathcal{H}} \exp(\Psi(y, h, \mathbf{x}, \theta))
\]

where \(\Psi \) is the potential function, and will be detailed later and \(\theta \) is the set of model parameters to be learned.

Like the original work of HCRFs [18], we adopt a chain structure shown in Fig. 2(a) to model the temporal relationships, and define the potential function as

\[
\Psi(y, h, \mathbf{x}, \theta) = \sum_{i=1}^{T} \phi(x_i, \theta_i(h_i)) + \sum_{i=1}^{T} \theta_2(y, h_i) + \sum_{i=1}^{T-1} \theta_3(y, h_i, h_{i+1}),
\]

where \(\phi(x_i) \in \mathbb{R}^d \) is the feature representation of action \(\mathbf{x} \) at time stamp \(t \). \(\phi(x_i) \) can be yielded by any features selected to characterize \(x_i \), \(\theta_1(h_i) \in \mathbb{R}^d \) is the parameter vector of the \(h \)th hidden variable. Inner product of \(\langle \phi(x_i), \theta_1(h_i) \rangle \) represents the consensus between observation \(x_i \) and hidden state \(h_i \). Intuitively, \(\theta_1(h_i) \) can be considered as the learned key pose to facilitate action classification. The number of states of each hidden variable \(h_i \) corresponds to the number of key poses. \(\theta_2(y, h_i) \in \mathbb{R} \) and \(\theta_3(y, h_i, h_{i+1}) \in \mathbb{R} \) measure the compatibility among the corresponding variables.

Supposed that we are given a training set of \(N \) actions, \(D = \{\{x_i, y_i\}\}_{i=1}^{N} \), where each action instance \(x_i \) is temporally normalized, and consists of \(T \) time stamps or frames, i.e., \(x_i = \{x_{i,1}, x_{i,2}, ..., x_{i,T}\} \), and \(y_i \in \mathcal{Y} \) is its class label. \(\mathcal{Y} \) is the class label set. The parameters \(\theta \) are derived with training set \(D \) by maximizing log likelihood,

\[
\theta^* = \arg\max_{\theta} \sum_{i=1}^{N} \log P(y_i|\mathbf{x}_i, \theta) - \frac{||\theta||^2}{2\eta^2},
\]

where the first term is the log-likelihood of the training data, and the second term is used for regularization.

In our implementation, the gradient descent based L-BFGS is used to optimize the parameter set \(\theta = \{\theta_1, \theta_2, \theta_3\} \). After optimization, the HCRFs model \(\theta^* \) is constructed. Given a testing action \(\mathbf{x} \), its label \(y \) is then inferred by

\[
y = \arg\max_{y \in \mathcal{Y}} \sum_{h \in \mathcal{H}} P(y', h, \mathbf{x}, \theta^*). \]

2.2. Temporal Pyramid Feature Representation

The original work of FTP [14] was construct by a top-down scheme that recursively partitions an action into several video segments, and extracts features from all the segments. The
temporal structure of the action is represented as the pyramid structure. In contrast to the top-down scheme, we adopt a button-up scheme for building our pyramid. Our method is motivated by the observation that features computed from different temporal resolutions of actions tend to provide diverse and complementary information for recognition. An action sequence in our temporal pyramid representation can be summarized to \(L \) layers, where each layer represents that action in a specific level of frame-wise feature quantization. The higher the layer, the coarser the features. For an input action \(x = \{x_1: T\} \) of length \(T \), we construct the pyramid features by merging \(\alpha \) \((l - 1)\) frame-wise feature vectors into a concatenated feature vector in each layer \(l \), where \(\alpha \) denotes the merging parameter.

Let \(T \) denote the length of an action video. The length of each layer \(l \) is given by

\[
T^{(l)} = \left\lfloor \frac{T}{\alpha \cdot (l - 1)} \right\rfloor, \text{ for } 2 \leq l \leq L, \tag{6}
\]

with \(T^{(1)} \triangleq T \). Given an action \(x = \{x_1: T\} \), its temporal pyramid representation can be defined as

\[
\hat{x} = \left\{ \hat{x}^{(l)} \right\}_{l=1}^L, \text{ where } \hat{x}^{(l)} = \hat{x}^{(l)}_{1:T^{(l)}} \tag{7}
\]

2.3. Learning HCRFs with Temporal Pyramid Features

For learning the proposed pyramid features, we adopt CRFs with latent variables to capture the hidden dynamics in each layer. Our method, multi-layer HCRFs (MLHCRFs), is developed upon HCRFs [18]. In MLHCRFs, the temporal pyramid representation of an action \(\hat{x} \) is associated with a set of hidden variables \(\hat{h} = \{\hat{h}^{(l)}\}_{l=1}^L \), where \(\hat{h}^{(l)} = \hat{h}^{(l)}_{1:T^{(l)}} \) with one hidden variable \(\hat{h}^{(l)} \) for each feature vector \(\hat{x}^{(l)} \) in layer \(l \).

The hidden variables of our model are used not only to model the temporal structure of the observation in each layer but also to learn the favorite weights over all the layers. The proposed MLHCRFs model is shown in Fig. 2(b). Compared to the original work of HCRFs, our model augments a set of hidden variables in each layer of the pyramid features. The potential function is defined as follows:

\[
\Psi(y, h, x, \theta) = \sum_{l=1}^{L} \sum_{t=1}^{T^{(l)}} \phi\left(\hat{x}^{(l)}, \hat{h}^{(l)}_{1:t^{(l)}}\right) + \sum_{l=1}^{L} \sum_{t=1}^{T^{(l)}} \theta_1\left(y, h^{(l)}_{1:t^{(l)}}\right) + \sum_{l=1}^{L} \sum_{t=1}^{T^{(l)}} \theta_2\left(y, h^{(l)}_{1:t^{(l)}}, h^{(l)}_{t+1}\right), \tag{8}
\]

where \(\theta = \left\{ \theta_1, \theta_2, \theta_3 \right\}_{l=1}^L \) denotes the parameter set which can be optimized by solving Eq. (4).

3. EXPERIMENTS

In this section, we firstly introduce the setting of the conducted experiments, including the two used datasets, the feature representations, and the evaluation metrics. We then depict the experimental results and the analysis.

3.1. Datasets for Evaluation

Our method is evaluated on the TaiChi Chun3D and the Daily Activities 3D datasets. Both of them are collected by us.

3.1.1. TaiChi Chun3D database:

This database is captured by Xsens MVN motion capture (Mocap), which is shown in Fig. 3(a) and can provide 3D locations of 23 body joints estimation in real time.

The database contains 21 TaiChi Chun actions, which were performed one time by a TaiChi Chun expert shown in Fig. 3(b). The frame rate is 200 fps. Thus, the collected videos are having very high temporal resolution. The durations of the collected actions range from 3 to 10 seconds. Hence, each of them contains from 600 to 2,000 frames.

To increase the diversity of the data, we generate four additional synthetic actions for each action. Specifically, we randomly select several frames from the original action, and add Gaussian noise to the body joint locations of the selected frames. The total number of action instances is 105. Some action examples of this dataset are shown in Fig. 3(c). More examples of this dataset can be found in our supplementary video: https://youtu.be/dyNFTpIP3Tw

3.1.2. Daily Activities 3D dataset:

This database contains 15 daily activities, including Walk, Sit down, Sit still, Use a TV remote, Stand up, Stand still, Pick up books, Carry books, Put down books, Carry a backpack, Drop a backpack, Make a phone call, Drink water, Wave hand, and Clap. Fig. 4 shows some frame examples of this dataset. A Microsoft Kinect is used in the collection so that the RGB video, the depth maps and the inferred skeletons [22] of each sequence are available simultaneously. Each skeleton data represents by using 3D locations of 20 body joints. The RGB and depth videos are captured by using a at frame rate 20 fps. Ten actors were employed to perform 15 daily activities in the construction of this dataset. Each actor perform each activity two times. This dataset contains 300 action instances.

Recognition difficulties, such as large intra-class variations, high inter-class similarity, and different perspective settings, make this dataset quite challenging. Fig. 5
Chun skeleton (rest act as the testing data). For our instance from one group serve as the training data, while the randomly partitioned into two equal-size groups. The action validation for performance measure. The action instances is making the skeletons invariant to absolute location of actors. each action. The normalization process in [3] is adopted for HCNFs [20], HSS [20] give the performance between 80% and 82%. Hierarchical Sequence Summarization Model (HSS) [20] 93.0 Method by Gowayyed et al. [13] 93.2

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-NN Classifier</td>
<td>46.0</td>
</tr>
<tr>
<td>Naive Bayes Classifier (NBC)</td>
<td>71.4</td>
</tr>
<tr>
<td>Action Graph [23]</td>
<td>74.3</td>
</tr>
<tr>
<td>Hidden Markov Model (AG) [17]</td>
<td>80.1</td>
</tr>
<tr>
<td>Recurrent Neural Networks (RNN) [24]</td>
<td>84.1</td>
</tr>
<tr>
<td>Hidden-State CRFs (HCRFs) [18]</td>
<td>91.3</td>
</tr>
<tr>
<td>Hidden Conditional Neural Fields (HCNFs) [20]</td>
<td>92.3</td>
</tr>
<tr>
<td>Hierarchical Sequence Summarization Model (HSS) [20]</td>
<td>93.0</td>
</tr>
<tr>
<td>Method by Gowayyed et al. [13]</td>
<td>93.2</td>
</tr>
</tbody>
</table>

![Image](https://i.imgur.com/3.png)

Fig. 5. Challenges in our Daily Activities3D dataset. (a)~(b): high inter-class similarity. The skeleton structures of (a) an activity make a phone call and (b) activity drink water look very similar. (c)~(f): large intra-class variations. For activity wave hand, actors may wave their left, right, or both hands.

shows some challenges examples. More challenge examples can be found in our supplementary video: https://youtu.be/2ObOaxIa710

3.2. Feature Representation and Evaluation Metrics

For both of the two databases we collected, each action is represented by the absolute 3D body joint positions (JP) in the skeletal streams. Each action instance consists of thirty skeleton (T = 30) frames which are uniformly sampled from each action. The normalization process in [3] is adopted for making the skeletons invariant to absolute location of actors.

For our Tai-Chi Chun3D dataset, we use two-fold cross validation for performance measure. The action instances is randomly partitioned into two equal-size groups. The action instance from one group serve as the training data, while the rest act as the testing data. For our Daily Activities3D dataset, we adopt the cross-subject test setting [23], where half of the subjects were used for training and the other half were used for testing. We then switch their roles, and report the average performance. A three-layer temporal pyramid is adopted in both of these two datasets.

3.3. Experimental Results

For the two datasets collected by us, we choose nine existing approaches for comparison, including k-nearest neighbor (kNN), naive Bayes classifier (NBC), recurrent neural networks (RNN) [24], action graph (AG) [23], hidden Markov model (HMM) [17], hidden-CRFs (HCRFs) [18], hidden conditional neural fields (HCNFs) [20], hierarchical sequence summarization model (HSS) [20], and the method by Gowayyed et al. [13]. Except [13], all the methods adopt the 3D JP features that we compiled. The method by Gowayyed et al. uses the features based on body joint trajectories and applies Fourier temporal pyramid, as described in [13].

The recognition rates of all methods on our Tai-Chi Chun3D dataset are reported in Table 1. The baseline approaches, kNN and NBC give the accuracy of 46.0% and 71.4%, respectively. RNN [24] give the accuracy of 84.1%. The graphical model-based methods, HMM [17], AG [23], HCRFs [18], HCNFs [20], HSS [20] give the performance between 80.1% and 93.0%. The state-of-the-art method [13] reaches 93.2%. Our method achieves the recognition rate of 96.2%, and is superior to the all competing approaches.

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-NN Classifier</td>
<td>69.6</td>
</tr>
<tr>
<td>Naive Bayes Classifier (NBC)</td>
<td>73.3</td>
</tr>
<tr>
<td>Action Graph (AG) [23]</td>
<td>73.5</td>
</tr>
<tr>
<td>Hidden Markov Model (HMM) [17]</td>
<td>75.3</td>
</tr>
<tr>
<td>Recurrent Neural Networks (RNN) [24]</td>
<td>77.3</td>
</tr>
<tr>
<td>Hidden-State CRFs (HCRFs) [18]</td>
<td>80.3</td>
</tr>
<tr>
<td>Hidden Conditional Neural Fields (HCNFs) [20]</td>
<td>81.3</td>
</tr>
<tr>
<td>Hierarchical Sequence Summarization Model (HSS) [20]</td>
<td>82.3</td>
</tr>
<tr>
<td>Method by Gowayyed et al. [13]</td>
<td>83.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-NN Classifier</td>
<td>69.6</td>
</tr>
<tr>
<td>Naive Bayes Classifier (NBC)</td>
<td>73.3</td>
</tr>
<tr>
<td>Action Graph (AG) [23]</td>
<td>73.5</td>
</tr>
<tr>
<td>Hidden Markov Model (HMM) [17]</td>
<td>75.3</td>
</tr>
<tr>
<td>Recurrent Neural Networks (RNN) [24]</td>
<td>77.3</td>
</tr>
<tr>
<td>Hidden-State CRFs (HCRFs) [18]</td>
<td>80.3</td>
</tr>
<tr>
<td>Hidden Conditional Neural Fields (HCNFs) [20]</td>
<td>81.3</td>
</tr>
<tr>
<td>Hierarchical Sequence Summarization Model (HSS) [20]</td>
<td>82.3</td>
</tr>
<tr>
<td>Method by Gowayyed et al. [13]</td>
<td>83.0</td>
</tr>
</tbody>
</table>

The recognition accuracy of all methods on our Daily Activities3D dataset are shown in Table 2. The baseline approaches, kNN and NBC give the accuracy of 66.6% and 73.3%, respectively. RNN [24] give the accuracy of 77.3%. The graphical model-based methods, HMM [17], AG [23], HCRFs [18], HCNFs [20], HSS [20] get recognition accuracy between 73.5% and 82.3%. The state-of-the-art method [13] achieves an accuracy of 83.0%. Our method achieves a recognition rate of 86.6%, which outperforms all the approaches.

Our approach leverages multi-level temporal evidences, and integrates them based on hidden variables, the experimental results on both datasets show its robust and effectiveness.

4. CONCLUSIONS

In this paper, we have presented a set of temporal pyramid features that enrich action representation with various levels of semantic granularities. We have also proposed a multi-layer conditional random fields (MLCRF) with latent states to learn and infer the temporal pyramid features. The hidden variables in our model are designed to select the favorable concatenations, and hence enhance the recognition performance. We have evaluated our approach on two datasets we collected, and compared it with both baseline and the state-of-the-art methods. The experimental results have shown that our approach achieve more favorable performance than the competing methods.

5. ACKNOWLEDGEMENTS

This work was supported in part by Ministry of Science and Technology under the grants MOST 104-2628-E-001-001-MY2, MOST 105-2221-E-001-030-MY2, MOST 104-2627-E-002-006-, and MOST 105-2627-E-002-003-.
6. REFERENCES

